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Abstract—It is known from experiments that the actual load-cartying capacities of plates are larger than those
predicted by the limit analysis theory. The behavior of plastic structures beyond the bending collapse load
is influenced by the changes in geometry of a structure during the process of plastic deformation. In the present
paper, an investigation of the load—deflection relationship for simply supported rectangular reinforced concrete
plates is presented. The tensile membrane action is found to be localized in zones of bending yield hinges. The
zones of pure membrane response consequently develop as the load increases. The paper presents a kinematical
method of analysis of plastic plates beyond the bending collapse load. Kinematically admissible collapse modes
are studied and the associated dissipation functions are derived. Load-deflection relationships are obtained
for various yield patterns. The theoretical results are compared with experimental data following from model
tests.

1. INTRODUCTION

Two MaIN factors influence the behavior of plastic structures beyond the plastic collapse
load, namely the material strain-hardening and the changes in geometry of a structure
during the process of plastic deformation. For the purpose of structural design of re-
inforced concrete plates the influence of hardening on the ultimate load is easy to estimate,
simply by substituting the actual ultimate strength instead of the yield stress of reinforcing
bars. From experiments on the plastic behavior of transversely loaded reinforced con-
crete plates it follows that deflection at the state of instability of the deformation process
cannot be considered small. It is also observed that the actual load carrying capacities
of plates are higher than those predicted by the limit analysis theory (even with the
appropriate modifications for the hardening effects). Therefore an investigation is required
which would take into account the changes in geometry of a structure in the process of
plastic deformation.

The importance of the problem of post-yield behavior of reinforced concrete plates
has already been pointed out by Gvozdev [1]. However, only recently a satisfactory
analysis concerning circular plates has been presented by Wood [2]. The methods of
plastic analysis, of rotationally symmetric, perfectly plastic shells have provided some
hints for derivation of load—displacement relations for circular plates (see [3-5]). A
rectangular plate problem cannot, unfortunately, be approached in the same way, since
a prerequisite for it is the complete limit analysis solution for bending. This, however,
cannot be obtained, except for very particular cases of loading. Therefore methods of
appropriate bounding of the load-deflection relation beyond the yield point load are
needed, (see [6, 7]).
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It follows from experiments on rectangular plates that either the post-yield membrane
action in reinforced concrete plates is localized in zones of bending yield hinges, or
certain additional ‘membrane hinges’ appear. This fact seems to have been noticed for
the first time by Wood [2]. The experiments by Jaeger, {8], Sawczuk et al, [9], rendered
some evidence in this respect.

In the present paper an investigation of the load-deflection relationship for simply
supported rectangular plates is presented. Both theoretical and experimental results are
given. To make the paper self-contained, in Section 2 basic relations of the plastic theory
of plates at moderately large deflections are recalled. The curves of bending-axial forces
interaction for reinforced concrete sections are briefly discussed in Section 3. Kinematic-
ally admissible collapse modes and the associated dissipation functions are analyzed
in Section 4, whereas Section 5 presents the load-deflection relations following from the
developed approximate theory. Section 6 contains a description of the test arrangements
and models. Recorded and theoretical load—deflection relations are compared in Section
7, the yield patterns being also given.

2. BASIC RELATIONS

In the present analysis, if not stated otherwise, the rigid-perfectly plastic model of
deformation is employed. Thus, in the deforming zones an appropriate yield condition
has to be fulfilled. For plates subjected to bending, the yield condition F = const. is
expressed in terms of the stress couples tensor M, (o, f = 1,2), namely F(M,4) = const.
At increasing deflections of a plate the membrane forces N,, appear, therefore the yield
condition takes the form F(M,, N,z) = const. Since components of the N ,-tensor are
deflection dependent, so is the stress profile on the yield hypersurface F.

The plastic deformation is accompanied by internal energy dissipation. In the presence
of bending and stretching, the dissipation density per unit area of the undeformed plate
middle plane takes the form

d = Mgh,g+ N,ogiog, (1

where K4 stands for the curvature rates, ia,, being the components of the extension rates
of the middle surface. If the plastic deformation process is to continue, the rate at which
the external forces do work must not be smaller than the rate of internal work. For a
plate of area A, this leads to the relation

~

ijdA > j d.dA =J (M gicas + Nophog) dA, 2)
A A A

where p stands for the transverse loading and W is the deflection rate. Since M,; N,
appearing in (2) are interconnected, in the process of plastic flow, by a deflection-
dependent relation F(M,g, N,5) = const., therefore (2) represents an estimation of the
load-deflection relationship for plates at large deflections. If the plastically deforming
regions can be localized at n generalized hinges, then the relation (3) takes the following
form (cf. [7])

j pWdA > i(NA,.+M9,.)1,., (3)
4 1

where A, and 6, stand for the concentrated elongation and rotation of the plate median
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surface at the ith generalized hinge, /; is the length of the respective hinge line, M and N
being respectively the bending moment and the axial force normal to the hinge line.

Let W denote a current, finite deflection at the yield hinge. If the distance between
the yield hinge and the rotation axis is ¢, then from geometry of deformation (cf. [10])
it follows that

0 = Wje, A = W?/2. (4)
The appropriate rates of deformation entering the relation (3) are

=We, A=WWe=W0. (5)

Substitution of (5) into (3) yields the result

J pWdA > Y (NW+M), (6)
A 1

which involves the actual deflection W of the hinge line.

For polygonal plates, Wat any hinge line is expressible in terms of the rotation rates
f,; thus the rate variables can be eliminated from (6) and an estimation of the load-
deflection relationship can be obtained. This involves only the M and N stress resultants
at the hinge, therefore the resultants normal to the hinge line. No other stress resultants
contribute to the internal energy dissipation, therefore such a particular projection of
the yield surface F(N,z, M,g) = 0 is required which involves the stress resultants M and
N only.

3. PLASTIC INTERACTION CURVES

For a thinwalled spatial reinforced concrete structure the yield condition is an inter-
section of two hypercylinders F,(N,,M,) =0 and F,(N,,M,) =0 in the space of
principal stress resultants N,, N,, M, M,, (cf. [11], [12]). Since the subspaces N, M,
and N,, M, are orthogonal, the projection of the yield surface to the N, M, space is
geometrically the same as an intersection of the yield surface by the planes M, = N,
= const. This allows us to consider only the yield interaction curve of resultants M, = M
and N; = N. In this way the problem of yield condition is reduced to evaluation of an
interaction curve in the M—N-plane.

Let us consider a cross section of unit width, reinforced at a distance H from the
plate middle plane. The plate thickness is 2H and F. denotes the reinforcement area
per unit length and normal to the cross section. The geometry of deformation at the
yielding cross section and the associate stress distribution at the state of failure are
shown in Fig. 1(a) and 1(b) respectively.

If the axis of rotation of the collapse mechanism link lies in the undeformed plate
middle plane then from the analysis of geometry of deformation the following relation
is obtained

LH = A = W)2, 7

where W denotes the actual deflection at the generalized hinge.



100 A SAwczZUk and L. WINNICK]

b) e
|
i M
o R I )
An _—
N
‘ B0y

On the other hand, the equilibrium requirements supply the expressions for the
resulting normal force N and the bending moment M. In dimensionless form the respec-
tive expressions are

N 1—1—15—50*, Sosé<, (8)
TN £ 1, 9)
M 3+léo <2 ::ED osesth 1o
" 2 > 1. (1n
3+ &,
where
No = F.o0 = RH(1—¢,),  2M, = RH*1—E)3+&,), (12)

stand for the ultimate tensile force and the ultimate moment at the cross section, respec-
tively. The parameter £, appearing in the above relations denotes the neutral layer
distance at the state of stress such that N = 0 and M = M, i.e. at the bending collapse.
The magnitude of &, depends on the percentage of reinforcement and the properties of
materials employed

502 I—F:UO/HRC* (13)

namely upon the concrete compressive strength R, and the yield stress g,.

In view of (13) it can be concluded that the membrane action in reinforced concrete
plates appears at a specified deflection of the yield hinge. The minimum deflection for
the membrane action to develop is W, ;, = 2HE,,.

By appropriate combination of the relations (7)~(11), the stress resultants in terms
of deflections can be obtained and therefore the load deflection relation (3) can be
evaluated for an actually considered collapse mode.

Elimination of £ from the relations given above yields the interaction curve
éO 1 - iO

+ 2
3+¢, " 3+¢,

which depends upon ¢&,, ie. upon the percentage of reinforcement. Evaluation of the

m+ 2n -1=0, (14)
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load—deflection relation may be facilitated if the interaction curve (14) is properly approxi-

mated. For 0 < n < 1, which is the case in the membrane action of plates, the inter-
action curve can be linearized to the form

m+n—-—1=0. (15)

Under such approximation the stress resultants take the following deflection-
dependent form

W _e

Ef_i_ 0
n= Toa to< &<, (16)

1, Ex>1, (17

w
3~§o—2—ﬁ(1+¢o)
,  Ee<E<, (18)
m= B+ N1 =¢0) 0 -
2
R Ex> 1. (19)

In the range of 0 < n < 1 and | < m < 2/(3+¢,) the respective interaction curves
are shown in Fig. 2. For 0 < £, < 1 all interaction curves lie within the bounds traced
in this figure by the lines AB, and AB,.

o —
~
ag
r 08} - - I[
€ 07f— |
06
05
0 0z

N ————

Fi1G. 2

If equation (12) is substituted into the expressions for the internal dissipation, the
following relation for the dissipation function per unit length of the hinge is obtained:

. 2n W\,
d, = (NW = 2o,
;= (NW+M), = M, <m+3+(§0 H)O' (20
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For the yield curve as given by equations (16)-(19) the dissipation function takes the
deflection-dependent form

PR Gk Y. (6—Eo) | Mo o< &< 1 21
BreNiogg | ferr  fe=es
(1,'—‘ -
~_(1+20)M 0, Ex>1, (22)

+So
where 0 = W/2H denotes a dimensionless deflection.
For a particular collapse mode the internal dissipation can be computed. It is seen
from (21) that the load-deflection relationship is non-linear. To evaluate the p—d depend-
ence, it is necessary to study the possible collapse modes of reinforced concrete plates.

4. COLLAPSE MODES

It can be learned from experiments on rectangular reinforced concrete plates that at
early stages of the post-yicld behavior, therefore for moderately large deflections, the
yield pattern does not change but remains that of the bending response. Therefore the
membrane action can be ‘localized’ at the yield hinges.

For a plate with edges restrained against sliding but free to rotate, a kinematically
admissible collapse mode is shown in Fig. 3. Compressive forces equilibrating the mem-
brane action are taken up by the supporting frame of the plate. In the case of symmetry
the collapse mode is defined by a single parameter #, to be evaluated according to the
vield line theory (cf. [13], [14])

At deflect’'ons W = 2¢H the membrane forces begin to dissipate energy. Along the
yield hinges shown in Fig. 3 three zones have to be distinguished. Within the range of
deflections 0 < W < 2¢,H, defined by the parameters ¥, and f,, only bending moments
do work. Along the line KL there is 2&, < W < 2H, therefore the dissipation has to be
computed according to equation (21). For W > 2H the expression (22) holds.
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If W, denotes the maximum deflection of the line CD, then

oH &, _ ¢
Bo = —Wo_ 26, Yo = 'Igga 3o 2 &, (24)

1 1
== 570, '/ll = r’g;, 50 2 15 (25)

where 6, = W,/2H.

The internal energy dissipation is due to pure bending response within the range
0 < x < Yoa, combined bending-membrane response for Yoa < x < ¥,a, and pure
membrane action within the range Y,a < x < na. If we denote by D, the dissipation
associated with the bending collapse, and by D the dissipation at the combined mem-
brane-bending action, then for the considered collapse mode we have

6 J . 1
D, = Moa 2AE M, b0 5 = MW, <oz+ ‘27,;> (26)

2

The dissipation of combined response depends upon the magnitude of the maximum
deflection and for &, < d, < 1 it becomes

. . . . b
D = M(y0abae+ Bobbas)+ M, (GAE + GABEE) x

" 40801 ) (4 [ 40— o1
I+ o0 M0,el =— 1420 50" - (5
Xj |: +(3+fo)(1 “fo)(é éoil dx+M, AE(z 'la> +(3+fo)(1 _60)(5 50):|

¥oa

where 6 = dyx/na, n and Y, being defined by the relations (23) and (24), respectively.
Integration yields the result

D = MW, { 1+4n*«?
2no

[(3—&,)—5“(3 g~ a5+ 343 62}

(3+EoX1 = o)

3—Eg)— 8050 + 1)+453]}
B+ &EN1—-¢&p) 4

By an analogous procedure the value of D for 6, > 1 can be evaluated. Knowing the
dissipation function, the load—deflection relation is estimated according to equation (3).
Before passing to presentation of the p—d relationship, we have to consider some other
collapse modes, particularly those relating to plates without restrained edges. If re-
inforced concrete plates are allowed to slide over the supports, then at a certain magnitude
of deflection there appears in rectangular plates a crack perpendicular to the longer
side of the plate. This crack passes across the thickness of the plate, but no rotation of
the adjacent parts of the slab with respect to the crack is observed. The first one who
noticed that fact seems to be Wood, [2]. Experiments by Jaeger, [8], also provide valuable
data in this respect. The above-mentioned collapse mode is shown in Fig. 4. The motion
of the collapse mechanism in comparison to that shown in Fig. 3 involves an additional
rotation of the element ACDE with respect to an axis perpendicular to the plate surface.
The plate element ACDE is at point D in contact with the adjacent part at the distance
¢oH from the middle surface.

+{x— 2r)oc)|:( 27
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FiG. 4

Evaluation of dissipation associated with the interaction curve (15) is, for the collapse
mechanism considered, somewhat cumbersome. If the following approximate assump-
tions are made, namely that

M=M,, N=20 along the line AF, } 8)
M =0, N = N, along the line F,CDE
the dissipation takes on the form
, , " , a. b. . R
D = MW abse+B,b0sp)+ ). NoAdi+NoH <§HAE+§OBA—'//1‘10AE“/31b03A)
i=1
an*e? +1 2no? — 4ot + 1
= MoWoﬂsT'F NOW(ZJT
o 2nat+1 dnta’ + 1)
W, o= & B —) 29
+NoWoH (Coz'\“ o $oBy 72 (29)

For the considered collapse mode as shown in Fig. 4 extension of the bending response
18

:“_:L*, = 2nhB. 30
b= Saamiang, Vo (30

whereas the dissipation (29) is computed according to (28), assuming that the segments
AECD are in contact at the distance H from the middle surface. Thus

|

Bl = = .
b= ssaroa a2 a1)

It is seen that the bending zone extent depends upon the deflection magnitude d, and
on the position of contact of the AECD-parts at the plate center.

In the evaluation of the dissipation function (29) it has been tacitly assumed that the
compressive forces are transmitted by the plate without any energy dissipation.
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Another collapse mode involving tension cracks is also possible. It is shown in Fig. 5.
In this case the bending moments are acting along the hinge ACD, whereas the axial
extension is concentrated on the line FC. The associated dissipation consists of the
bending dissipation as given by (26) whereas, when including the additional term due
to stretching, we have
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Having derived expressions for the dissipation function, we can proceed to the
evaluation of the load—deflection relations.

5. LOAD-DEFLECTION RELATIONSHIP

The load—deflection relation beyond the plastic collapse in dimensionless form can
be written as follows
p D

A=—=— (33)
Po Do
where p denotes the actual load, p, being the bending collapse load.
For a plate with restrained boundaries, substitution of (26) and (27) into (33), after
certain rearrangements, yields the results

A=1 0< &, (349
2
A= C-D(1+B)d,+E(1 +2B)53—CA§;—, (o <0< 1, (35)
(4]
A= G+G(1+B)50—AGF31—, 3o > 1. (36)
0

The values of coeflicients 4, B, C, D, E, and F are contained in Tables 1 and 2.
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TABLE 1
x 10 12 14 16 18 20
1+4n%a?
_ e 1000 0947 0897 0843 0794 0750
14 2na
2no? —4nta?
i M 0000 0054 0104 0158 0206 0-250
1+ 2na?
TABLE 2
Z 00 06 07 08 09 10
3-&
C= "% 1000 1667 2070 2875 5380 x
B3+ &)1 -¢&y)
145
po_ 5% 0167 1-398 2030 3290 7050 o
23+ €M1 —&o)
4
E=o 0444 0926 1200 1750 3420 ©
33+ &N1—¢&p)
1—2E,+¢3
F= —%«i" 0-0833 00133 00075 00033 00008 0
2
G= 0667 0-555 0-540 0-527 0513 0-500
3T ¢,

For the collapse mode shown in Fig. 4 substitution of (29) into (33) yields for the
range 3o > &, the following result:

4= GIo+G(1+¢,K)+ 5, A[2— G2+ ¢ )] £o < O, (37)

From relations (26), (32) and (33) the load-deflection relationship associated with the
collapse mode shown in Fig. 5 is found to be linear in terms of d,, namely

2 1
et ()L Vs, = 1+GPs,. 38
g +(3+éo><1+211a2>0 +6F0% (38)

The coefficients A and G entering equation (37) are contained in Tables 1 and 2, whereas
the values of I, K and P are given in Table 3. Values of §, entering (37) are to be computed
from (31).

TABLE 3
o 1-0 12 14 16 18 2:0
4']2&2
I=1-— 0-500 0-486 0-485 0496 0-502 0527
1+ 2na?
2na?
= 5 0-500 0-567 0-604 0-661 0694 0723
14+ 2na
1
0-500 0-433 0-396 0-339 0-306 0277
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For the sake of comparison in Fig. 6 there are presented the load—deflection relation-
ships for the case of a = 2. Fig. 6(a) concerns £, = 0-6, thus it corresponds to the rein-
forcement percentage u = 19, whereas in Fig. 6(b) the diagrams are shown as corre-
sponding to ¢, = 0.

It can be seen that the collapse mode shown in Fig. 3 can give smaller values of the
limit load only for deflection of the order of magnitude of the plate thickness. With
increasing deflections the collapse modes with one or two transverse cracks are associated
with a lower value of the load. Fig. 6(b) shows that a situation may arise when the collapse
mode of type shown in Fig. 4 is more probable than that of Fig. 5. It is also seen that

a) b)
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plates with boundaries allowed to slide show smaller increase of load as the deflections
are increasing.

Our concern now will be a comparison between the approximate load-deflection
relationships obtained for rectangular plates, and experimental data.

6. DESCRIPTION OF MODELS AND TEST ARRANGEMENTS

Tests were made on plates 20mx1-0m, a/b =2 and 1-6mx1-1m, a/b = 145.
The plate thickness was 3-0 cm, the effective thickness 2H = 26 cm. The models were
made of concrete of average compressive strength R, = 175kg/cm?, measured on
cylinders ¢ 16cm, | = 16 cm. The models were reinforced with mild steel mesh made
of annealed ¢ 3 mm wires. Two types of isotropic mesh were used, namely reinforcement
type I, ¢ 3 at 3 cm spacing, reinforcement percentage p = 0-907 9, and type 1I, ¢ 3 at
6 cm spacing, reinforcement percentage u = 0453 9. The yield point stress of wires was
0o = 2690 kg/cm?, the tensile strength R, = 3540 kg/cm?, In computing the theoretical
collapse load the tensile strength R, has been substituted into the yield moment formula.
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According to (12) the ultimate yield forces and the ultimate moment are, respectively,

8350 kg/m, type I, (39)
Ny = F.R, = { P
4175 kg/m, type 11, (40)
F.R 192-5 kgem/cm, type 1, (41)
M, = F1R0(2H~ x "): { Y
2R, 102-4 kgem/cm, type IL (42)

The theoretical values of the bending collapse load, computed according to the
relation, (cf. [14])

po = 6Mo/a’n? (43)
are given in Table 4.
TaABLE 4

o 1-45 2:00

" 0405 0-326
ml_leinforccment Type 1 7‘;;)6: 11 Type 1 Type ﬂAu
. 097 043 0907 0453
Glesen 28 E o 2n 43

In order to eliminate the influence of tensioned concrete on the yield moment and
on the bending collapse load the tensioned zone of concrete along the theoretical hinge
lines has been disrupted by an arrangement of flat bars with reduced bond between the
steel and concrete.

Models were placed on a test bed consisting of a steel box without a deck. Water
pressure was applied to the bottom face of a test slab. Along the edges the slab contacted
an appropriate arrangement of supporting hinges, allowing for rotation and sliding of
the plate over the supports.

Loading was performed with a constant velocity. The constancy of loading velocity
was assured by an electronic control device. Deflections of the plate center as well as
rotations at two points on the yield hinge were measured by means of mechanical devices.
The increase of loading, deflections and rotations were recorded automatically on a
paper tape.

Two identically reinforced models were tested for each plate size and reinforcement
amount.

7. TEST RESULTS

In Figs. 7, 8 and 9 the results of deflection measurements are presented in the form of
load—deflection relationships for a plate center. The solid lines denote the experimentally
obtained relations between the applied pressure and the dimensionless deflection
do = Wy/2H. The plates were loaded up to deflections of magnitude W ~ 20 cm, thus
do = T5.
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Since the results of measurements represent the total deflection i.e. the elastic and the
irreversible one, it is necessary to take this fact into account when comparing the obtained
load—deflection relationships with those following from formulas derived in Section 5
for rigid-plastic plates. Although it is not fully justified, elastic deflections have been
added to those of post-yield response. The resulting curves are shown in Figs. 7-9 by
broken lines. When computing the elastic deflections it has been assumed that up to the
collapse load p, the plates respond linearly elastic and for p > p, their response is purely
plastic. Two values of p, are indicated in the figures. The lower one corresponds to the
steel yield stress o, the upper one to the ultimate strength R, (cf. Table 4). Obviously
the upper theoretical curve should run above that obtained from experiments.
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As it was clearly seen from Fig. 6, the lowest theoretical load—deflection relation for
plates with unrestrained boundary is that associated with the collapse mode shown in
Fig. 5. Thus the experimental results have been compared with those following from
the formula (38).

Elastic deflections at the plate center were computed according to the relation (cf.
[15])

W = Bpa*/D,p < po (44)

where f = 000739 for b/a = 145 and f = 0-01013 for b/a = 2-0. The bending rigidity
was taken D = EI and the inertia moment I has been substituted for a fissurated plate.
For R, = 175kg/cm?, &, = 2690kg/cm?, n = 6,/R, =15 and Young’s modulus
E = 160000 kg/cm? the rigidities were found to be D = 2:18x107 kgem?/m for
u = 0907% and D = 1-44 x 107 kgcm?/m for p = 0-453%.

In Figs. 10 and 11 the obtained collapse modes are shown for two cases of plate size.
The tensile cracks perpendicular to the longer edge are clearly visible. Position of these
cracks is that as idealized in Fig. 5.

Fig. 12 is presented in order to give an idea of the magnitude of permanent deformation
of tested plates.

The experimental data as demonstrated in Figs. 7-12 are in agreement with the
theoretical results of the developed method of post-yield analysis for reinforced concrete



F1G. 10. Collapse mode for plates a/b = 2-0.

FiG. 11. Collapse mode for plates a/b = 1-435.
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F16. 12. Permanent deflection due to membrane action in bending.
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plates. It is seen that the influence of geometry changes on the carrying capacities of
plates can be significant, especially for plates with restrained edges. Since such cases
generally occur in structures, the large-deflection theory of reinforced concrete plates
seems to be worth pursuing in application to orthotropic plates as well as for other
boundary conditions.
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Résumé—1L’expérience a démontré que le pouvoir portant des dalles est supérieur a celui qui résulterait de la
théorie des lignes de rupture. Le comportement des constructions plastiques au-dela de la charge limite de
flexion subit I'influence des changements de la géométrie d’une structure au cours de sa déformation plastique.
L’article présente une étude du rapport charge/flecche pour dalles rectangulaires en béton armé & appui
simple. On constate que I'*“effet de membrane” se trouve localisé dans les zones des rotules plastiques de
flexion. En conséquence, les zones d'effet de membrane s’accroissent & mesure que la charge augmente. Une
méthode cinématique d’analyse des dalles plastiques au-dela de la charge limite en flexion est présentée; des
modes de rupture cinématiquement admissibles sont étudiés et les fonctions de dissipation qui les accompagnent
en sont dérivées. Des rapports charge/fléche sont obtenus pour différents mécanismes de rupture. Les résultats
théoriques sont comparés avec les données expérimentales obtenues par essais sur modéles.

AGcTpakT—V3 ONBITOB HM3BECTHO, YTO ACHCTBHUTENBHAA TIpy30-Hecyluass CHOCOOHOCTL INMTHI SBNAETCH
Gonplineit, YeM Mpencka3aHHas IO TEOpWH mpeaenbHo# Harpysku. IToBeneHHe IIaCTHYECKHMX CTPYKTYP 3a
npeaenoM M3rnbarollieif KPHTHYECKOM HArpy3KM 3aBUCHT OT M3MEHEHHS T€OMETPHM CTPYKTYDHI BO BPEMSA
npouecca IUlacTudeckodt Aedopmammu. B HacToswed paboTe paccMaTPHBAIOTCH OTHOLLIEHMS MEXAY
Harpy3koM M nporuGoM B NPSMOYTONBLHBIX Xele30-0eTOHHBIX IUTHTAX, HMEIOLUUX IPOCTYIO OINOpY.
HalineHo, 4TO HeHCTBME pPacTSXHMOH MeMOpaHbl JIOKAJM30BAHO B 30HAX NOALAIOIIMXCA Heperuby
nyHkToB. C yBeIMYEHHEM HArpy3Ku 06pa3yroTca 30HBI YNCTHIX MeMOpaHHbIX peaxunii. PaGora npemnaraer
KHHEMATHYECKHA METOJ aHANM3a IUIACTMYECKMX IUIMT 33 NpeAeiIOM KPHTHYECKOM crubaroinelt Harp-
y3ku. PacCMaTpUBAIOTCH KHHEMATHYECKH HOIYCTHUMBIE C/IyYaW Pa3pyLIeHHs M BRIBOOATCH ACCOLHMPO-
BaHHBIE AWccUnatvBHpie GyHkimM. [ToyYeHBI OTHOILEHHA HATPY3KH K NMporu0y mns pasmHYHRIX CXEM
cMellueHni. TeopUTHYECKHE pe3y/bTaThl CPABHABAIOTCA ¢ IKCIICPHMEHTA/ILHBIMY JAHHBIMH, NIOITYYeHHBIMHA
W3 HCNIBITAHUR HA MOJENTH.



